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ABSTRACT

As part of NOAA’s Warn-on-Forecast (WoF) initiative, a multiscale ensemble-based assimilation and

prediction system is developed using the WRF-ARW model and DART assimilation software. To evaluate

the capabilities of the system, retrospective short-range probabilistic storm-scale (convection allowing) en-

semble analyses and forecasts are produced for the 27 April 2011 Alabama severe weather outbreak. Results

indicate that the storm-scale ensembles are able to analyze the observed storms with strong low-level rotation

at approximately the correct locations and to retain the supercell structures during the 0–1-h forecasts with

reasonable accuracy. The system predicts the low-level mesocyclones of significant isolated tornadic super-

cells that align well with the locations of radar-derived rotation. For cases with multiple interacting storms in

close proximity, the system tends to producemore variability in mesocyclone forecasts from one initialization

time to the next until the observations show the dominance of one of the cells. The short-range ensemble

probabilistic forecasts obtained from this continuous 5-min storm-scale 6-h-long update system demonstrate

the potential of a frequently updated, high-resolution NWP system that could be used to extend severe

weather warning lead times. This study also demonstrates the challenges associated with developing a WoF-

type system. The results motivate future work to reduce model errors associated with storm motion and

spurious cells, and to design storm-scale ensembles that better represent typical 1-h forecast errors.

1. Introduction

The National Oceanic and Atmospheric Administra-

tion’s (NOAA)Warn-on-Forecast (WoF; Stensrud et al.

2009a) research and development project envisions in-

corporating numerical weather prediction (NWP)

model forecasts into the severe and hazardous weather

warning decision-making process of NOAA’s National

Weather Service (NWS). The vision for a WoF system

is a continuously updated, ensemble-based data assimi-

lation and probabilistic forecast system that can provide

quantitative information regarding the evolution of se-

vere thunderstorm events on a 1-h time scale and po-

tentially help operational forecasters improve tornado

warning lead times. To achieve this goal, assimilation of

Doppler radar and other available observations of on-

going convection in storm-scale NWP models is crucial

(Stensrud et al. 2009a). Despite the current limitations

and challenges of associated with the observations,
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models, and assimilation methods, progress has been

made over the past decade in assimilating radar obser-

vations from severe convective storms into storm-scale

models (Stensrud et al. 2009a, 2013).

One data assimilation approach that shows promise

for the envisioned WoF-type system is the ensemble

Kalman filter (EnKF). Research during the past decade

shows that good representation of ongoing convection

can be achieved from storm-scale EnKF-based analyses

within a homogeneous, single-sounding idealized frame-

work (e.g., Snyder and Zhang 2003; Dowell et al. 2004;

Tong and Xue 2005; Xue et al. 2006; Aksoy et al. 2009,

2010; Yussouf and Stensrud 2010, 2012; Dowell et al.

2011). To explore the efficacy of such a storm-scale en-

semble-based EnKF framework for WoF-type applica-

tion, Dawson et al. (2012) and Potvin andWicker (2013)

conducted idealized experiments and generated proba-

bilistic forecasts of low-level rotation of supercell

storms. In particular, Dawson et al. (2012) tested such a

system for the 4–5 May 2007 Greensburg, Kansas, tor-

nadic supercell case and show that short-range proba-

bilistic forecasts of low-level rotation can be achieved

with good accuracy from such a system. However, ide-

alized experiments often use horizontally homogeneous

and temporally constant environmental conditions and

past studies illustrate that incorporating the influence of

horizontal environmental variability and mesoscale

forcing on the storm scale flows is very important for

obtaining accurate predictions of tornadic supercell

thunderstorms (Aksoy et al. 2009; Ziegler et al. 2010;

Stensrud and Gao 2010).

The value of assimilating real radar observations into

heterogeneous mesoscale environments has been ex-

amined in recent years and the results obtained are very

encouraging (e.g., Dowell et al. 2010; Snook et al. 2011;

Jung et al. 2012; Snook et al. 2012; Yussouf et al. 2013a;

Putnam et al. 2014; Wheatley et al. 2014). For example,

Snook et al. (2012) and Putnam et al. (2014) show that

reasonable probabilistic forecasts of mesovortices

within a mesoscale convective system can be achieved

by using the Advanced Regional Prediction System

(ARPS) model (Xue et al. 2000) and an EnKF system

initialized from assimilating real observations within a

realistic mesoscale environment. Yussouf et al. (2013a)

investigated the benefits of assimilating real radar ob-

servations in a storm-scale data assimilation and forecast

system using heterogeneous mesoscale environments

for the 8 May 2003 Oklahoma City, Oklahoma, tornadic

supercell storm and found that the ensemble system is

able to predict the probability of a strong low-level

vorticity track exceeding a threshold of 0.006 s21 for the

tornadic supercell with good accuracy. The background

storm environments used for that study are based on the

same set of physics parameterization schemes (fixed

physics) across the ensemble members. To quantify the

impact of physics diversity within the ensemble on

storm-scale forecasts, another recent study conducted

by Yussouf et al. (2013b) used background storm envi-

ronments from either fixed physics or multiphysics

(Stensrud et al. 2000) mesoscale ensembles for the same

tornadic supercell. Results show that the storm-scale

ensemble with multiphysics background fields provides

more realistic probabilistic forecasts of low-level rota-

tion than that from the fixed-physics mesoscale back-

ground. All of these studies illustrate that reasonable

short-range probabilistic forecasts of low-level rotation

can be achieved for some supercell storms that are

somewhat isolated in nature.

Whereas previous storm-scale data-assimilation and

NWP studies have tended to focus on isolated convec-

tive storms or systems, more typical storm situations

involve multiple interacting storms. Furthermore, tor-

nadoes can form within a wide variety of parent storm

modes ranging from discrete supercells and quasi-linear

and mesoscale convective systems to tropical cyclones

(Thompson et al. 2012; Edwards et al. 2012). Therefore,

it is important to test storm-scale NWP systems for ro-

bustness in complicated situations with numerous su-

percell storms and storm interactions such as these.

One extreme tornado outbreak in recent years that

caused severe damage across the southeastern part of

the United States is the event from 27 April 2011. This

event is unique in terms of the number of strong to vi-

olent tornadoes produced (199 total over the 24-h pe-

riod) across 14 states, the number of resulting fatalities

(316) and injuries (more than 2700), and the amount of

damage (insurable loss exceeding $4 billion dollars)

(Knupp et al. 2014). It is one of the most significant se-

vere weather outbreaks in recent U.S. history. Of the

316 deaths reported, 313 are associated with the super

outbreak of tornadoes during the afternoon and evening

hours (NOAA 2012; TRAC 2012) of 27 April. In this

study, we further investigate the utility of a multiscale

ensemble data assimilation and forecast system for 0–1-h

forecasts for the 27April 2011 tornado outbreak, focusing

specifically on northern Alabama. A 36-member multi-

physics mesoscale and storm-scale data-assimilation

and prediction system is developed. The mesoscale en-

semble is used to provide the boundary conditions for

a one-way-nested storm-scale ensemble centered on

northern Alabama. Conventional observations are as-

similated by the multiscale ensemble every hour to ob-

tain realistic mesoscale environments. Before the onset

of the Alabama tornado outbreak, data from four radars

and conventional observations are assimilated into the

storm-scale domain continuously every 5min for a 6-h
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period and these analyses are used to initialize frequent

1-h ensemble forecasts. Many of the supercell thunder-

storms that passed through northern and central Ala-

bama during the afternoon and evening hours on that

day were long-lived supercells that produced long-track

violent tornadoes, making this case an ideal candidate to

demonstrate the capabilities of a WoF multiscale en-

semble data assimilation and forecast system.

A brief overview of the 27 April severe weather out-

break inAlabama is provided in section 2, followed by the

experiment design of both the multiscale and storm-scale

radar data assimilation systems in section 3. Section 4

assesses the qualitative results of the analyses and fre-

quent ensemble forecasts from the storm-scale 5-min

analysis system. A final discussion is found in section 5.

2. Overview of the 27 April 2011 Alabama tornado
outbreak

The 27 April 2011 tornado outbreak in Alabama was

the most violent round of severe weather from the

record-breaking 4-day-long (25–28 April) episode of

significant severe weather that impacted the southern

plains and southeastern United States. The severe

weather on 27 April 2011 can be classified into three

distinct events: an extensive early morning quasi-linear

convective system (QLCS), a shorter midday QLCS

over northern Alabama, and the widespread long-lived

tornadic supercell outbreak during the afternoon and

evening hours (Knupp et al. 2014). The focus of this

data-assimilation and forecast study is on the super

outbreak of tornadoes during the afternoon and evening

hours over north and central Alabama.

An overview of environmental conditions and con-

vective storm evolution is provided by Knupp et al.

(2014) and NOAA (2012). By 1900 UTC 27 April 2011,

thunderstorms had formed along two main lines in

Mississippi and in scattered locations farther east into

northern Alabama (Fig. 1a). At around 1930 UTC, a

violent round of severe weather began over Alabama

and lasted until midnight. Numerous supercell thun-

derstorms (Fig. 1b) went over much of northern and

central Alabama, producing strong to violent tornadoes

during this period (Fig. 1c). A list of the significant tor-

nadoes that were rated as category 3 or higher on the

enhanced Fujita (EF) scale is presented in Table 1.

The Hackleburg–Phil Campbell–Tanner (referred to as

the Hackleburg tornado from hereafter) tornado over

northern Alabama exhibited the longest path, about

212 km, followed by another long-track tornado in

Cordova that was approximately 200 km in length. The

Tuscaloosa–Birmingham tornado caused the highest

number of fatalities and injured more than 1000 people.

Multiple operational Weather Surveillance Radar-

1988 Dopplers (WSR-88Ds) documented the life cy-

cle of these tornado outbreaks. These radars provide a

unique dataset in which continuous 5-min storm-scale

data-assimilation experiments are conducted to assess

the capability of the system to forecast low-level

rotation.

3. Experiment design

a. Multiscale WRF ensemble system

An ensemble-based multiscale data-assimilation and

prediction system is designed using version 3.4.1 of the

Advanced Research core of the Weather Research and

Forecasting Model (WRF-ARW; Skamarock et al.

2008). The parent mesoscale model domain (Fig. 2a)

covers the contiguous United States (CONUS) with a

horizontal grid spacing of 15 km, and a storm-scale do-

main nested within the mesoscale domain covers

northern Alabama and surroundings (Fig. 2b). A grid

spacing of 3 km is used for the storm-scale domain,

which is sufficient to produce storms with mesocyclones

but is not capable of producing sub-mesocyclone-scale

circulations such as tornadoes (Yussouf et al. 2013b).

Both domains have 51 vertical grid levels, from the

surface to 10 hPa aloft. A 36-member multiscale en-

semble is initialized at 0000UTC 27April 2011 using the

analyses from National Centers for Environmental

Prediction’s (NCEP) 21-member Global Ensemble

Forecast System (GEFS; Toth et al. 2004; Wei et al.

2008). Out of the 21 members, the first 18 members are

used to create a 36-membermultiscale ensemble system.

In addition, the first 18 members of the GEFS system

provide the lateral boundary conditions for the 15-km

mesoscale domain. The ensemble uses different combi-

nations of physics schemes among its members (Table 2)

to address the uncertainties in the model physics pa-

rameterization schemes (e.g., Stensrud et al. 2000,

2009b; Fujita et al. 2007; Wheatley et al. 2012). The di-

versity in physics options includes three cumulus pa-

rameterization schemes [Kain–Fritsch (Kain and Fritsch

1993; Kain 2004), Grell-3 (Grell and Devenyi 2002), and

Tiedtke (Tiedtke 1989; Zhang et al. 2011b)], three

planetary boundary layer (PBL) schemes [Yonsei Uni-

versity (YSU; Hong et al. 2006), Mellor–Yamada–Janji�c

(MYJ; Janji�c 2002), and Mellor–Yamada–Nakanishi–

Niino level 2.5 (MYNN2; Nakanishi and Niino 2006,

2009)], two shortwave (SW) radiation schemes [Dudhia

(Dudhia 1989) and RRTMG (Iacono et al. 2008)], and

two longwave (LW) radiation schemes [RRTM (Mlawer

et al. 1997) and RRTMG (Iacono et al. 2008)]. The

Thompson (Thompson et al. 2004, 2008) microphysics
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FIG. 1. (a) Composite reflectivity (dBZ, from the NSSL NMQ system) at

1900 UTC 27 Apr 2011 over the region of interest. (b) As in (a), but at 2100 UTC.

(c) NWS damage swaths from north-central AL tornadoes (intensity ratings are

indicated by colored lines; the start and end times for each swaths in UTC are

labeled in black) during the afternoon and evening hours.
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and Noah (Tewari et al. 2004) land surface schemes are

both fixed across the ensemble members. The physics

options for both the parent and nested grid ensembles

are identical except for the cumulus parameterization

scheme, which is turned off on the storm-scale domain.

b. Observation preprocessing

The routinely available observations that are assimi-

lated by the multiscale ensemble system are obtained

fromNOAA’sMeteorological Assimilation Data Ingest

System (MADIS). The observations assimilated in both

meso- and storm-scale ensembles are the altimeter set-

ting, temperature, dewpoint, and horizontal wind com-

ponents from aviation routine weather reports

(METARs), mesonet and marine surface stations, ra-

winsondes, aircraft, and satellite-derived winds. These

MADIS observations are quality controlled using the

MADIS processing and automated quality control (QC)

procedure (as described online at http://madis.noaa.gov/

madis_qc.html), which includes spatial and temporal

consistency checks. The radar observations assimilated

are the Doppler velocity and reflectivity from four

WSR-88Ds (Fig. 2b): KBMX in Birmingham, Alabama;

KHTX in Hytop, Alabama; KDGX in Jackson, Mis-

sissippi; and KGWX at Columbus Air Force Base,

Mississippi. The raw level-II radar observations are

obtained from the National Climatic Data Center

(NCDC) and contain 14 scan angles (VCP-12 mode),

completing each full volume scan in approximately

4.5min. The reflectivity observations are quality con-

trolled using the Quality Control Neural Network

(QCNN; Lakshmanan et al. 2003) method to remove

nonmeteorological echoes, anomalous propagation, and

ground clutter. The Doppler velocity is dealiased using

the method from Eilts and Smith (1990). The edited

reflectivity and velocity observations are then objec-

tively analyzed using the Observation Processing and

Wind Synthesis (OPAWS; see Majcen et al. 2008) soft-

ware. Any values of reflectivity below 0dBZ are set to

0 dBZ and are assumed to represent ‘‘no precipitation,’’

and radial velocity observations are omitted where the

reflectivity is less than 20dBZ. The radar observations

are analyzed to 6-km grid spacing in the horizontal but

on the original conical scan surfaces (Sun and Crook

2001; Dowell et al. 2004; Dowell and Wicker 2009), using a

Cressman (1959) scheme. The ‘‘no precipitation’’ reflectivity

observations are thinned to every 12km (by skipping a

grid point in each horizontal direction) to reduce the

computational cost. Finally, the objectively analyzed

radar observations are divided into 5-min bins and are

assimilated at 5-min intervals.

c. DART ensemble data assimilation and forecast
system

The data assimilation system used for this study is the

ensemble adjustment Kalman filter (EAKF; Anderson

2001) from the Kodiak release branch (revision 5038) of

the Data Assimilation Research Testbed software sys-

tem (DART; Anderson and Collins 2007; Anderson

et al. 2009).

1) MESOSCALE 1-H UPDATE SYSTEM

To create the mesoscale background, METAR, meso-

net, marine, rawinsondes, aircraft, and satellite-derived

winds from MADIS are assimilated into the ensemble

every 1h from 0100 UTC 27 April to 0000 UTC 28 April

2011 (Fig. 2c). Radar observations are not assimilated to

create the mesoscale background. Both grids are run

simultaneously in a one-way nested setup. The parent

mesoscale ensemble provides the boundary conditions

for the nested storm-scale ensemble. A half-radius of

230 km in the horizontal and a half-radius of 4 km in the

vertical are used for the covariance localization function

for the mesoscale ensemble [the fifth-order correlation

TABLE 1. The 11 significant tornadoes (EF3–EF5) over north-centralAL between 1900UTC 27Apr and 0100UTC 28Apr 2011 [based on

information from National Weather Service Birmingham (2014) and NOAA (2012)].

Tornado Start time (UTC) End time (UTC) Duration (min) EF Length (km)

Cullman 1940 2038 58 4 75.4

Hackleburg–Phil Campbell–Tanner 2005 2220 135 5 212.4

Cordova 2040 2256 136 4 205.7

Shottsville 2042 2123 41 5* 59.7

Section–Flat Rock 2101 2157 56 4 75.6

Tuscaloosa–Birmingham 2143 2314 91 4 139.8

Jackson 2205 2231 26 4 48.7

Haleyville 2210 2247 37 3 51.2

Sawyerville–Eoline 2230 2355 85 3 116

DeKalb 2319 2355 36 5 59

Ohatchee 2328 0045 77 4 156.6

* EF5 rating based on damage in Mississippi.
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function from Gaspari and Cohn (1999)]. In addition, a

temporally and spatially varying adaptive inflation

(Anderson 2009) is applied at each assimilation cycle

to the prior state space before the observations are

assimilated to counteract the tendency of ensemble

underdispersion. The filter implements additional ob-

servation quality control steps during assimilation

such that if the magnitude of the difference between an

FIG. 2. (a) The multiscale domain with the 15-km horizontal grid-spacing mesoscale domain covering the CONUS and the nested 3-km

storm-scale domain centered over northern AL. (b) The storm-scale domain enlarged with WSR-88D locations and color-coded tornado

tracks, (c) the timeline of the hourly multiscale data assimilation experiments, and (d) the timeline for the storm-scale data assimilation

and forecast experiments.
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observation and prior ensemble mean exceeds 3 times

the square root of the sum of the prior ensemble vari-

ance and observation error variance (i.e., an outlier

threshold of 3.0), that observation is rejected (Liu

et al. 2012). The assumed observation errors are the

same as in Table 3 of Romine et al. (2013) except for

METAR and marine temperature (1.75K), METAR

altimeter (0.75 hPa), and marine altimeter (1.20 hPa).

The state variables updated by the data assimilation

scheme include the three wind components, perturba-

tion potential temperature, perturbation geopotential,

perturbation surface pressure of dry air, and potential

temperature tendency due to microphysics, as well as

water vapor and all available hydrometeor fields (mixing

ratios of cloud, rain, snow, ice, and graupel, and the

number concentration of rain and ice) from the semi-

double-moment Thompson microphysics scheme. In

addition, the model-diagnosed 10-m horizontal wind

components, 2-m temperature and water vapor, total

surface pressure, and reflectivity are included in the

model state for the filter, for the purpose of computing

model priors in observation space.

2) STORM-SCALE CONTINUOUS 5-MIN UPDATE

SYSTEM

As mentioned earlier, the focus of this study is on the

northern Alabama severe weather outbreak that began

around 1930 UTC and extended through the evening

hours. To capture those supercells in the storm-scale

analyses, the 1800 UTC 27 April storm-scale model

TABLE 2. Physics options for the multiphysics, multiscale WRF ensemble system. Here IC, BC, PBL, SW, and LW stand for initial

conditions, boundary conditions, planetary boundary layer, and shortwave and longwave, respectively.

Multiphysics ensemble

Ensemble

member

GEFS member

for ICs and BCs

Cumulus

(15-km grid only) Microphysics PBL

Land

surface SW radiation LW radiation

1 1 Kain–Fritsch Thompson YSU Noah Dudhia RRTM

2 2 YSU RRTMG RRTMG

3 3 MYJ Dudhia RRTM

4 4 MYJ RRTMG RRTMG

5 5 MYNN2 Dudhia RRTM

6 6 MYNN2 RRTMG RRTMG

7 7 Grell-3 Thompson YSU Noah Dudhia RRTM

8 8 YSU RRTMG RRTMG

9 9 MYJ Dudhia RRTM

10 10 MYJ RRTMG RRTMG

11 11 MYNN2 Dudhia RRTM

12 12 MYNN2 RRTMG RRTMG

13 13 Tiedke Thompson YSU Noah Dudhia RRTM

14 14 YSU RRTMG RRTMG

15 15 MYJ Dudhia RRTM

16 16 MYJ RRTMG RRTMG

17 17 MYNN2 Dudhia RRTM

18 18 MYNN2 RRTMG RRTMG

19 18 Kain–Fritsch Thompson YSU Noah Dudhia RRTM

20 17 YSU RRTMG RRTMG

21 16 MYJ Dudhia RRTM

22 15 MYJ RRTMG RRTMG

23 14 MYNN2 Dudhia RRTM

24 13 MYNN2 RRTMG RRTMG

25 12 Grell Thompson YSU Noah Dudhia RRTM

26 11 YSU RRTMG RRTMG

27 10 MYJ Dudhia RRTM

28 9 MYJ RRTMG RRTMG

29 8 MYNN2 Dudhia RRTM

30 7 MYNN2 RRTMG RRTMG

31 6 Tiedke Thompson YSU Noah Dudhia RRTM

32 5 YSU RRTMG RRTMG

33 4 MYJ Dudhia RRTM

34 3 MYJ RRTMG RRTMG

35 2 MYNN2 Dudhia RRTM

36 1 MYNN2 RRTMG RRTMG
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output from the hourly updated system is used as the

background (prior) to assimilate radar,mesonet,METAR,

radiosonde, and aircraft observations only on the

storm-scale domain every 5min for a 6-h period out to

0000 UTC the next day. The 15-km hourly updated

mesoscale domain is used as the boundary conditions for

the 3-km storm-scale 5-min update system.

All observations including radar and other conventional

observations within each 5-min window are assumed to be

valid at the central time. The no-precipitation reflectivity

observations are assimilated to help suppress spurious

convection that may develop in the model (Tong and

Xue 2005; Aksoy et al. 2009; Dowell et al. 2011).

Observation-error standard deviations are assumed to

be 5 dBZ and 2m s21 for reflectivity and Doppler ve-

locity, respectively. The covariance localization for the

storm-scale ensemble is set to have a half-radius in the

horizontal (vertical) of 9 (3) km for radar observations,

60 (3) km for mesonets, and 180 (3) km for other con-

ventional observations. Additional spread to the storm-

scale ensembles is provided by using the additive noise

technique (Dowell andWicker 2009). The additive noise

technique is employed to add random, smooth, local

perturbations every 15min of the assimilation cycle to

each ensemble member’s horizontal wind components,

temperature, and water vapor at locations where the

observed radar reflectivity exceeds 40 dBZ. The additive

noise is applied to themodel state variables immediately

before the updated ensemble is integrated forward in

time. The perturbations have standard deviations of

0.50m s21 for horizontal winds and 0.50K for tempera-

ture and dewpoint before smoothing (Dowell et al. 2011;

Yussouf et al. 2013a). The spatial length scale for the

perturbation smoothing function is 9 km in the hori-

zontal and 6km in the vertical.

To demonstrate what a WoF-type frequently updated

forecast system might produce, 1-h ensemble forecasts

with WRF history files every 5min are initialized every

15min starting from 1900 UTC, after 60min of storm-

scale data assimilation, and ending at 2315UTC (Fig. 2d).

The objective is to examine the quality of the analyses

and very short-range ensemble probabilistic forecasts

initialized from those analyses.

4. Results and discussion

a. Observation-space diagnostics

To quantitatively evaluate the overall performance of

the assimilation system during the 6-h-long assimilation

period from the 3-km storm-scale domain, observation-

space diagnostic statistics (Dowell et al. 2004; Dowell

and Wicker 2009; Yussouf et al. 2013a) of mean

innovation (observation 2 model), root-mean square

innovation (rmsi), total ensemble spread (standard de-

viation), and consistency ratio (from prior/background)

are calculated using Eqs. (1)–(4) in Yussouf et al.

(2013a). These statistics are calculated for the assimi-

lated reflectivity and radial velocity observations (Fig. 3)

from data in 5-min bins for the four WSR-88Ds. The

mean innovation is a measure of the bias of the forecast–

analysis with respect to the observations, the rmsi gives a

measure of the overall fit of the forecasts and analyses to

the observations, and the total spread gives information

helpful for evaluating the sufficiency of ensemble spread

for effective data assimilation. The reflectivity statistics

are calculated for regions where the observed re-

flectivity is greater than 10dBZ to isolate the perfor-

mance measure around convective storms (Aksoy et al.

2009; Dowell et al. 2011; Dawson et al. 2012; Jung et al.

2012). As mentioned earlier, the radial velocity obser-

vations assimilated are already quality controlled to in-

clude radial velocity only where the observed reflectivity

observations are greater than 20 dBZ. Therefore, no

additional threshold is used to calculate the radial ve-

locity statistics.

The mean innovation for reflectivity is comparatively

larger (3–6 dBZ) during the initial spinup of the storm-

scale ensemble (first ;30min) and then starts to

decrease with time and remains within the range of

1.5–2.5 dBZ (Fig. 3a). Clearly the model underpredicts

the reflectivity during the entire assimilation period.

Further investigation reveals that (not shown) after the

initial model spinup, the mean reflectivity innovation

is comparatively small (0–2 dBZ) at midlevels but

varies between 2 and 4dBZ near the surface and aloft,

indicating underprediction of reflectivity. For radial

velocity, the mean innovation (Fig. 3b) is very close to

0 (magnitude 0.6m s21 or less). The rmsi for reflectivity

(Fig. 3a) starts with a higher value of 7–10dBZ but de-

creases with subsequent assimilation cycles. After about

1 h of data assimilation, the rmsi for reflectivity becomes

fairly stable. For radial velocity observations (Fig. 3b),

the rmsi slightly increases during the later part of the

assimilation period (possibly associated with increasing

number, size, and/or amplitude of storms) but overall

remains stable for the entire 6-h assimilation period.

The ensemble spread is representative of the forecast

error only if the total spread and rmsi are of comparable

magnitude, as indicated by the consistency ratio. A

consistency ratio of ;1.0 indicates that the prior en-

semble variance is a good approximation of the forecast

error variance for the assumed observation error. The

consistency ratio for reflectivity is smaller in early as-

similation cycles, with initial values of 0.5 indicating

insufficient spread, but increases with time to values
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close to 0.8 (Fig. 4a). In general, ensemble under-

dispersion of reflectivity (Figs. 3a and 4a) is a common

problem in real data assimilation studies at the convec-

tive scale (Aksoy et al. 2009; Snook et al. 2011, 2012;

Jung et al. 2012; Yussouf et al. 2013a; Wheatley et al.

2014). In our study, the reflectivity bias of 1.5–6.0 dBZ

(Fig. 3a) also leads to the consistency ratio being less

than 1 because rmsi, the denominator of this ratio, in-

cludes contributions from bias errors.

The radial velocity observations maintain more fa-

vorable consistency ratios with initial values around 0.6

that increase rather quickly with subsequent assimila-

tion cycles to values within a range of 0.9–1.1 (Fig. 4c).

Importantly, the filter shows no sign of divergence dur-

ing the 6-h-long continuous period of 5-min assimilation

indicating robustness of the data assimilation system.

The drop in the number of radar observations (Figs. 4b,d)

at around 2220 UTC is due to the loss of communica-

tion and thus data loss from the KHTX radar at about

2216 UTC. The overall observation-space diagnostics

(Figs. 3 and 4) suggest that the configuration parameters

of the ensemble data assimilation system are fairly rea-

sonable and stable.

b. Reflectivity analyses and probabilistic forecasts

To evaluate the overall structure, location, and in-

tensity of the supercell storms from the continuous 6-h-

long 5-min update system, the reflectivity analyses and

forecasts from two representative times, specifically

1930 UTC (after 90min of data assimilation) and

2130UTC(after 210minof data assimilation), are examined

and compared with the observed reflectivity (Figs. 5 and 6).

The reflectivity observations (shown in the first row in

Figs. 5 and 6) are obtained from the National Mosaic

FIG. 3. Observation-space diagnostic statistics for assimilated (a) reflectivity (dBZ) and

(b) Doppler velocity (m s21) observations from the four radars during the 6-h–every-5-min

storm-scale data-assimilation period. Blue lines indicatemean innovation, red lines indicate the

rmsi, and the green indicates the total ensemble standard deviation. The reflectivity statistics

are computed only where the assimilated observed reflectivity is .10 dBZ. The sawtooth

patterns are due to the plotted forecast and analysis statistics.

3052 MONTHLY WEATHER REV IEW VOLUME 143



and Multi-Sensor QPE (NMQ) 3D radar reflectivity

mosaic (Zhang et al. 2011a) system. The NMQ re-

flectivity observations are initially gridded using 1-km

grid spacing and so are thinned to 3-km grid spacing to

match the storm-scale WRF grid. The reflectivity anal-

yses (Figs. 5b and 6b) at 1.5 km above mean sea level

(MSL) from an ensemble member reveal that the as-

similation system is able to place the main supercells in

themodel at approximately the correct locations, as well

as produce realistic supercell structures (e.g., curved

shape and strong gradients) (Figs. 5a and 6a).

A positive aspect of the results from 1930 and

2130 UTC is the ability of the system to maintain strong

supercell storms from the analyses well into the short-

term forecasts (Figs. 5 and 6). The rapidly developing

storm that impacted Cullman, Alabama, had just become

FIG. 4. The consistency ratio (calculated from the priors) and number of observations

assimilated during the 6-h storm-scale data-assimilation period for (a),(b) reflectivity and

(c),(d) Doppler velocity. The reflectivity statistics are computed only where the observed

reflectivity is .10 dBZ.
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a supercell before the 1930 UTC initialization time, and

the ensemble forecast (Fig. 5) shows a strong signal for

maintenance of this soon-to-be significant storm. In a

typical member forecast, a low-level mesocyclone per-

sists 30min into the forecast (Figs. 5e,h). A probabilistic

representation of the ensemble reflectivity forecasts

shows high probabilities near the observed Cullman

storm track throughout the forecast (Figs. 5f,i,l). The in-

cipient Hackleburg storm had just developed a small,

high-reflectivity core at 1930 UTC (not shown), but the

forecasts clearly show its development into a significant

storm as it enters into the northwest portion of the

plotted domain (Figs. 5h,k,i,l).

Multiple significant supercells, including the Hackleburg,

Cordova, and Tuscaloosa–Birmingham storms, were on

going in northern Alabama at the 2130 UTC initializa-

tion time (Fig. 6). For these three storms, the 0–30-min

forecast correctly shows maintenance of strong storms

FIG. 5. (a),(d),(g),(j) The reflectivity observations (colors, 5-dBZ increment); (b),(e),(h),(k) analysis and every-15-min forecast

from ensemble member 18 (black contours are the vertical vorticity from 0.003 to 0.008 s21 at 0.001 s21 interval at 1.5 km MSL); and

(c),(f),(i),(l) the ensemble probability (colors, 10% increment) of reflectivity . 40 dBZ (thick black contours represent the observed

40-dBZ reflectivity) at 1.5 kmMSL for the 45-min period beginning at 1930 UTC 27 Apr 2011. The thin black lines overlaid on each panel

in (c),(f),(i), and (l) are the NWS-surveyed tornado damage paths. The portion of the domain shown here is over north-central AL.
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with large, high-reflectivity cores and low-level rotation

(Figs. 6e,h,k,f,i,l). On the other hand, a storm that pro-

duced an EF3 tornado in northwest Alabama (labeled

‘‘Haleyville’’ in Fig. 6l) is poorly forecast by the ensemble.

A problem seen previously in ensemble experiments

with idealized model configurations (Tong and Xue 2005;

Aksoy et al. 2009; Dowell et al. 2011, Lange and Craig

2014) and seen in the current case with full mesoscale

complexity is the development of spurious convective cells

in the forecast. Around the generally well-forecast main

supercells, the individual ensemble members produce a

number of small cells (Figs. 5e,h,k and 6e,h,k). Factors that

may have contributed to the generation of spurious cells

include incorporation of noise due to frequent observation

assimilation, dynamical imbalance, or less consistent

model dynamics at such high resolution (Lange and

Craig 2014). In future work with this case, we will ex-

amine forecast sensitivity to the model configuration

and data-assimilation procedures in an attempt to iden-

tify the most significant factors leading to spurious cells.

The last rows in Figs. 5 and 6 show the probability of

reflectivity greater than 40dBZ from the 36-member

FIG. 6. As in Fig. 5, but for analyses at 2130 UTC.
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ensemble at the analysis time (Figs. 5c and 6c) and then

from forecasts every 15min (Figs. 5f,i,l and 6f,i,l). The

thick black contour is the observed 40-dBZ reflectivity

contour, and the thin black lines overlaid on each panel

are the NWS-surveyed tornado damage paths. Overall,

the ensemble is successful at associating high probabilities

with the dominant observed storms, but a closer in-

spection reveals some errors. The high probabilities of the

model-generated storm cores are somewhat smaller than

the observed storm cores (Figs. 5c and 6c,f), and some

cores are even associated with zero probability in the

forecast (Figs. 5f,i,l and 6i,l). Factors likely to play a role

include model errors associated with physics parameteri-

zation schemes and model grid spacing. Furthermore,

there are systematic displacement errors. Specifically, the

forecast storms tend to move faster northeast than the

observed storms.One possible factor for the displacement

errors is the generation of too strong of a cold pool from

reflectivity assimilation (Dowell et al. 2011; Yussouf et al.

2013a). Future work will investigate the reasons for the

errors associated with the storm motion.

c. Ensemble probabilistic forecasts of low-level
rotation of the tornadic supercell storms

The 3-km model horizontal grid spacing used in this

study is far too coarse to explicitly resolve any tornado

circulation, so instead we focus on mesocyclone fore-

casts. One good measure that can be used to infer the

amount of low-level rotation within the rotating super-

cells from 3-km horizontal grid spacing models is the

vertical vorticity (Stensrud and Gao 2010; Dawson et al.

2012; Stensrud et al. 2013; Yussouf et al. 2013a). To

evaluate the capability of the 5-min update system to

forecast low-level mesocyclones from supercell storms,

the ensemble’s probability of vertical vorticity at 1 km

above ground level (AGL) is calculated (vorticity

swaths). The 0–1-h forecast output (which is written out

at 5-min intervals) from each ensemble member ini-

tialized from a certain analysis time is checked to see

whether the vorticity exceeds a threshold value at the

grid point at any output time, and the vorticity proba-

bilities are calculated from the number of members ex-

ceeding the threshold values. A threshold of 0.002 s21 is

used for the vertical vorticity, which is a reasonable

choice for grid-scale-based vorticity swaths at 3-km grid

spacing (Yussouf et al. 2013a). Therefore, each of the

swaths represents probabilistic forecasts of vorticity

exceeding 0.002 s21 at any time during the 1-h forecast

period from the 36-member ensemble initialized at a

certain analysis time. The idea is to see how well the

ensemble system forecasts the low-level rotation swath

of a particular storm with the observations assimilated

so far. The probability forecasts of low-level rotation

associated with some of the significant tornadic storms

(tornadoes with EF ratings of 3 and higher) are exam-

ined and discussed below.

1) THE CULLMAN TORNADIC SUPERCELL

The first tornado that struck Alabama during the

afternoon severe weather episode was the Cullman

tornado. The tornado formed inwesternCullmanCounty

at 1940 UTC [1440 central daylight time (CDT)] and

tracked northeast through the heart of Cullman, a city of

15 000 people (TRAC 2012; NOAA 2012). The NWS

rated the tornado EF4 with a pathlength of 75.4 km

(Table 1). The 1-h forecast vorticity swaths for the

Cullman storm are examined every 15min for the

1900–1945 UTC initialization times, after 60–105min of

radar data assimilation (Figs. 7a–d). The swaths are com-

pared against the NWS-surveyed damage track and the

FIG. 7. The 1-h ensemble probability of vorticity exceeding a threshold of 0.002 s21 at 1 kmAGL for the Cullman supercell storm from

the every-15-min analyses. Overlaid in each panel is the NWS-observed tornado damage track (gray outline, 1940–2038 UTC) and the

WDSS-II-generated radar low-level (0–2 kmAGL)mesocyclone rotation exceeding a threshold of 0.004 s21 (black symbols) during the 0–

1-h forecast periods.
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Warning Decision Support System–Integrated Informa-

tion (WDSS-II; Lakshmanan et al. 2007) generated

0–2-km mesocyclone circulations (Miller et al. 2013)

from the radar observations. The NWS damage track is

shown by a gray line and the black symbols show the

radar-derived circulation locations of vorticity 0.004 s21

and higher during the 0–1-h forecast. The radar-derived

rotation track and the NWS damage track complement

and agree fairly well with each other, indicating that

the combination of both can be used to compare how

well the model performs in forecasting the low-level

rotation of the supercells. However, caution must be

exercised when comparing the model-generated low-

level vorticity swaths with the observed NWS tracks

and radar-derived WDSS-II circulations since these

three quantities are not the same and may not always

correlate well with tornado strength or even the exis-

tence of a tornado. The 1-h forecast probability of

vorticity from the 1900UTC ensemble (Fig. 7a), which is

initialized 40min before tornado formation, indicates

zero low-level mesocyclone probability over the exact

location where tornadogenesis occurred. However, the

model forecasts high probabilities of low-level rotation

(i.e., a rotating supercell) farther west and southwest,

aligned with radar-observed rotation signatures of the

pretornadic Cullman supercell (Fig. 7a). With an addi-

tional 15min of data assimilation, the forecast vorticity

swath (Fig. 7b) from 1915 UTC analyses, with proba-

bilities as high as 40%, is still displaced to the west of

the observed tornado damage track. The forecast

probabilities for a strong low-level mesocyclone are

increased with an additional 15min of observation

assimilation (Fig. 7c), and the forecast vorticity swath

shifts eastward more toward the observed rotation and

damage track compared to that initialized from the

1915 UTC analyses. The forecast vorticity probabilities

from 1945 UTC analyses, the time when the tornado is

occurring, reach values as high as 100% (Fig. 7d). The

high probabilities along the mesocyclone track from the

1945 UTC forecast are more aligned with the observed

Cullman mesocyclone and tornado damage tracks than

the forecast probabilities from earlier lead times.

2) THE HACKLEBURG–PHIL CAMPBELL–TANNER

TORNADIC SUPERCELL

Among the many tornadoes in northern Alabama, the

Hackleburg tornado had the longest track. This tornado

formed at 2005 UTC just inside the Mississippi–

Alabama border in southwest Marion County. The

tornado moved northeast through northern Alabama

and into southern Tennessee, remaining on the ground

for approximately 212 km before dissipating in Franklin

County, Tennessee. This tornado was rated EF5 in

Hackleburg and Phil Campbell, injuring at least 145

people and killing 72 more (TRAC 2012).

The forecast low-level vorticity swaths for theHackleburg–

Phil Campbell tornadic supercell are shown in Fig. 8.

The left panel (Fig. 8a) is a 1-h forecast from the

1930 UTC analysis ensemble, initialized 35min before

the tornado formed. Several supercells traversed from

eastern Mississippi to northern Alabama and portions

of southern middle Tennessee during that time. The 1-h

forecast from 1930 UTC shows a low-level mesocyclone

track, with probabilities as high as 85%, which overlaps

with the radar-derived rotation but to the left (north-

west) of the observed Hackleburg damage path. During

the forecast period, another smaller cell over eastern

Mississippi matured into a rotating supercell, moved

northeast, and produced low-level rotation during the

last 15-min forecast period with probabilities as high

as 80% (the shorter swath at the lower left in Fig. 8a).

The forecast initialized at 1945 UTC (Fig. 8b), after

three more assimilation cycles, shows the dominant

high-probability swath with values as high as 95%;

the storm path remains somewhat to the left of the

observed Hackleburg damage track. Attached to the

FIG. 8. As in Fig. 7, but for the Hackleburg tornado that starts at 2005 UTC and ends at 2220 UTC.
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southwestern end of the high-probability swath is a

parallel lower-probability swath straddling theMississippi–

Alabama border. In reality, radar data indicate two

developing storms in close proximity between 1940 and

2000 UTC (not shown). From an additional 15min of

observation assimilation between 1945 and 2000 UTC,

the ensemble changed its depiction about which of the

pair of storms would dominate, now associating the

high probability swath (Fig. 8c) with the observed storm

that would soon produce the Hackleburg tornado. The

vorticity probabilities are highest early in the forecast,

approaching 100%, and gradually decreasing with time.

The ensemble forecast from 2015 UTC (Fig. 8d) in-

creases the extent of high probabilities of low-level ro-

tation and also aligns the swath more along the observed

rotation and damage track. Overall, the forecast prob-

abilities of a strong low-level mesocyclone are consis-

tently increased with each additional assimilation cycle

for the Hackleburg tornadic storm.

To the northwest of the Hackleburg track is another

model-generated high-probability vorticity swath (Figs. 8c,d)

that aligns well with the radar-derived rotation. There

was indeed a rotating supercell along that swath, but no

tornado was detected with that storm, in real time or

after the fact. This storm is included in an ongoing in-

vestigation, to be reported upon in a future paper, about

whether it might be possible to differentiate between

tornadic and nontornadic supercells at grid resolutions

that do not explicitly resolve tornado-scale circulations.

A storm even farther northwest that produced a short-

lived tornado, indicated by probability swaths in Fig. 8

from northeast Mississippi to southwest Tennessee, is

outside the domain of our study.

3) THE CORDOVA TORNADIC SUPERCELL

The long-track, violent Cordova tornado formed at

2040 UTC and passed through Pickens, Tuscaloosa,

Fayette, Walker, Cullman, Blount, and Marshall Counties

of Alabama along its 205-km path over 2 h and 10min

(TRAC 2012). This tornado achieved a maximum

intensity of EF4 and resulted in 54 injuries and 13

fatalities. The supercell that produced the Cordova

tornado later produced another violent (EF5) tornado,

which formed at 2319 UTC over DeKalb County

(Table 1).

The 1-h ensemble probabilistic vorticity forecast from

the 2000 UTC analyses (Fig. 9a), initialized 40min be-

fore tornadogenesis, shows some sign of mesocyclones

along the radar-derived Cordova rotation track but with

low probabilities (10%–30%). After 15min, the forecast

probabilities are increased to as high as 50% (Fig. 9b).

At 2030 UTC, which is 10min before tornadogenesis,

the ensemble forecast shows probability values as high

as 90% (Fig. 9c), and these high probabilities are

maintained and even increased to higher than 95% in

some places later for the ongoing tornadic supercell

(Fig. 9d).

4) THE TUSCALOOSA–BIRMINGHAM TORNADIC

SUPERCELL

The Tuscaloosa–Birmingham tornado was the dead-

liest tornado of the day, causing 65 fatalities and injuring

around 1500 people along its 140-kmpath fromTuscaloosa

to the Birmingham suburbs. The tornado developed

at 2143 UTC southwest of Tuscaloosa, then exited the

Tuscaloosa metropolitan area and tracked east-northeast

toward Birmingham. Just 14min after the Tuscaloosa–

Birmingham tornado finally lifted at 2314UTC, the parent

Tuscaloosa–Birmingham supercell spawned another vio-

lent tornado (the EF4 Ohatchee tornado at 2328 UTC;

Table 1).

Instead of 1-h forecast vorticity swaths, the forecasts

shown in Fig. 10 extend out to 2315 UTC, which is the

end time of the tornado. The forecast lengths range from

135min in the top row (forecasts initialized at 2100 UTC,

which is 43min before tornadogenesis) to 90min in the

FIG. 9. As in Fig. 7, but for the Cordova tornado that starts at 2040 and ends at 2250 UTC.
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bottom row (forecasts initialized at 2145 UTC, the time

of tornadogenesis). Thus, the forecast vorticity swaths

cover the entire lifetime of the Tuscaloosa–Birmingham

tornado. In addition to the probabilities of vorticity

exceeding a 0.002 s21 threshold (first column), grid-scale

probabilities of updraft helicity exceeding a threshold

(UH; Kain et al. 2008; Clark et al. 2012, 2013; Yussouf

et al. 2013b) over 0–2 km (low level) and 2–5 km

(midlevel) AGL also are calculated. The thresholds

used in Fig. 10 for low- and midlevel UH are 25 (second

column) and 100m2 s22 (third column), respectively,

and these threshold values are reasonable choices for

FIG. 10. (a)–(d) Ensemble probability of vorticity forecasts exceeding a threshold of 0.002 s21 at 1 kmAGL, (e)–(h) the 0–2-km updraft

helicity exceeding a threshold of 25m2 s22, and (i)–(l) the 2–5-kmupdraft helicity exceeding a threshold of 100m2 s22 from (top to bottom)

the every-15-min analyses for the Tuscaloosa–Birmingham supercell. Overlaid in each panel is the NWS-observed tornado damage track

(gray outline) and the WDSS-II-generated radar-derived low-level (0–2 km AGL, left and middle columns) and midlevel (2–5 km AGL,

right column) mesocyclone exceeding a threshold of 0.004 s21 (black symbols) during the indicated forecast periods.
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identifying significant low-levelmesocyclonic features at

3-km grid spacing (Carley et al. 2011; Trapp et al. 2011).

For the four initialization times shown, variability

in the vorticity/helicity swaths near Tuscaloosa and

Birmingham appears to be related to different forecast

scenarios for a pair of storms in close proximity (not

shown).Wewill call these the lead storm and the trailing

storm. The trailing storm, which was the storm that

eventually dominated and produced the Tuscaloosa–

Birmingham tornado, was to the southwest of the lead

storm at 2100 UTC. The forecasts from 2100 UTC show

probabilities of strong low-level rotation with values as

high as 100% (Figs. 10a,e,i) for the leading storm, but

the vorticity swath is displaced to the west-northwest of

the tornado damage track. At this time, the probabilities

of low-level rotation for the trailing storm are lower on

average along the swath than for the leading storm, but

the swath overlaps with the radar-derived circulations

and aligns along the entire Tuscaloosa–Birmingham

observed track. The probability forecast initialized

15min later (Figs. 10b,f,j) still shows well-defined swaths

associated with both the leading and trailing storms.

After three more assimilation cycles (i.e., 15min

later), the ensemble forecast initialized at 2130 UTC

(Figs. 10c,g,k) clearly emphasizes the trailing storm,

showing swaths of vorticity/helicity exceeding the thresh-

olds with probabilities greater than 15% along the entire

Tuscaloosa–Birmingham observed track. While there

are still indications of low-level rotation with probabil-

ities greater than 65% for the leading storm (Figs. 10c,g),

the midlevel rotation has dissipated by this time

(Fig. 10k). By the 2145 UTC initialization time, proba-

bilities have become high along the entire radar-derived

rotation track, and there have been refinements in the

location of the axis of highest probabilities.

The vorticity swath plots shown in Figs. 7–10 are cal-

culated using raw gridpoint probabilities. However,

since high-resolution NWP models typically are not

skillful at grid scale, a common practice (Schwartz et al.

2010; Snook et al. 2012; Yussouf et al. 2013a,b; Potvin

and Wicker 2013; Schwartz et al. 2014; Schumacher and

Clark 2014) is to use a neighborhood-based approach in

calculating probabilities to account for small spatial and

temporal errors. We compare the raw gridpoint-based

probabilities (Fig. 10) to neighborhood probabilities

(Fig. 11) for the Tuscaloosa–Birmingham tornado. We

apply a neighborhood with a radius of influence of 9 km

around the grid points (Snook et al. 2012; Yussouf et al.

2013a,b) and generate Fig. 11, which is similar to Fig. 10

but using thresholds of 0.004 s21 for vorticity (first col-

umn), 50m2 s22 for 0–2 km AGL UH (second column),

and 150m2 s22 for 2–5 km AGL UH (third column) to

calculate the probabilities. Overall, the results show that

the neighborhood-based (Fig. 11) forecast probabilities

are higher (with wider swaths) compared to those from

the gridpoint-based probabilities (Fig. 10), indicating that

the selection of specific neighborhood parameters (e.g.,

radius of influence, thresholds, etc.) can sometimes inflate

the forecast probabilities. Moreover, the neighborhood-

based probabilities can make the inspection of the two

nearby swaths from two rotating storms less obvious

(Figs. 11a–c, 11e–g, and 11i–k). Another interesting as-

pect of the neighborhood-based approach is the spatial

uncertainty associated with the mesocyclone position.

For example, the forecast probability at the end of the

Tuscaloosa–Birmingham tornado swath from the 2145UTC

analyses has gridpoint probability values of ;10%

(Fig. 10d), while the neighborhood-based approach

shows probability values of;50% (Fig. 11d). However,

the spatial uncertainty is very different at the start of the

swath where the storm position is known very accu-

rately, yet the same neighborhood approach is applied

to all points within the 1-h forecast, indicating that the

‘‘cone of uncertainty’’ should expand with time.

Therefore, the neighborhood approach should account

for the spatial uncertainties in the forecast with in-

creasing lead time as the storm tracks diverge in time.

This is a crucial part of developing probabilistic guid-

ance for WoF-type systems and needs to be investigated

further in the future.

The forecasts of low- and midlevel UH swaths for

other tornadic supercells discussed above are very sim-

ilar to the vorticity swaths and hence are not shown.

Using UH track as a proxy for tornado pathlength

forecasts, Clark et al. (2013) showed in other storm-scale

model forecasts for this case that the UH forecast

pathlength was strongly related to the track length of the

observed tornadoes.

5) FREQUENT 1-H FORECAST VORTICITY SWATHS

FROM THE 5-MIN UPDATE SYSTEM

Warn-on-Forecast systems will assimilate the most

recently available observations of ongoing convection

and provide ensemble forecasts frequently (Stensrud

et al. 2009a). To evaluate if such systems are plausible,

1-h ensemble forecasts were produced every 15min from

the continuous 5-min storm-scale update system. The

forecast probabilities of vorticity exceeding 0.002 s21 at

1km AGL are generated from initializations as early as

1900 UTC, which is after 60min of radar data assimila-

tion, and the last forecast is initialized at 2315 UTC

(Fig. 12). During this time period, 11 significant tornadoes

with ratings ranging from EF3 to EF5 occurred over

north-central Alabama (Table 1). The NWS damage

tracks in Fig. 12 are overlaid on each panel if that par-

ticular tornado was occurring during that forecast period.
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We quantify the forecast lead time (how early the

ensemble system is able to indicate low-level rotation)

over the genesis locations of the 11 significant tornadoes

for forecast probabilities of vorticity greater than 10%

and 50% (from the 1-h forecasts at the every-15-min

intervals in Fig. 12) in Table 3. This simple method of

quantifying forecast results focuses on the ensemble’s

ability to develop rotating storms from incipient con-

vective cells and to maintain existing mature supercells.

The case of interest here is generally considered to

FIG. 11. As in Fig. 10, but using a neighborhood approach with a radius of 9 km to create the ensemble probability of (a)–(d) vorticity

forecasts exceeding a threshold of 0.004 s21 at 1 km AGL, (e)–(h) the 0–2-km updraft helicity exceeding a threshold of 50m2 s22, and

(i)–(l) the 2–5-km updraft helicity exceeding a threshold of 150m2 s22 from (top to bottom) the every-15-min analyses for the Tuscaloosa–

Birmingham supercell. The overlaid NWS-observed tornado damage track (gray outline) and the WDSS-II-generated mesocyclone

rotation (black symbols) exceeding a threshold of 0.004 s21 are the same as in Fig. 10 but here are plotted using larger thickness for better

readability.
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have a high degree of predictability (NOAA 2012).

During the coming years, WoF prototypes will be tested

for more cases and verified with more comprehensive

statistics that also include false alarm rate and account

for the reduction in lead time associated with forecast

latency.

In general, the forecast probabilities show signs of

low-level mesocyclone development downstream of in-

cipient and mature storms, corresponding roughly to

observed tornado tracks, for forecast lead times aver-

aging 35min (as high as 58min) with probabilities

greater than 10%, and for forecast lead times averaging

18min (as high as 31min) with probabilities greater than

50% (Table 3). The lead times vary considerably among

the 11 tornadoes, an issue that must be investigated in

future studies with more cases. With each additional

assimilation cycle, the forecast probabilities of a strong

low-level mesocyclone are generally increased, and the

swath of highest probabilities is more aligned with

the observed storm track. For the Section–Flat Rock,

Tuscaloosa–Birmingham, and Ohatchee tornadic events,

the system performs reasonably well in forecasting

vorticity swaths with probabilities greater than 50% at

longer lead times (281min). But for tornadic events like

Cullman, Cordova, and Haleyville, the lead times for

50% probabilities are 10min or less. Indeed, significant

research efforts are needed to address the challenges of

generating accurate forecasts of low-level rotation even

at 30-min lead times. Overall, results for the several

tornadoes examined here could suggest there is some

hope for useful operational guidance in tornado warn-

ings provided by continuously cycled NWP ensembles.

This concept will be investigated in future work with

other cases across a spectrum of storm environments

and storm modes.

5. Summary and conclusions

One aspect of the WoF project is the numerical-

model-based probabilistic storm-scale analysis and

forecast of hazardous convective weather events to

support the warning operations within NOAA (Stensrud

et al. 2009a). To evaluate if such a system is plausible, a

WRF-ARW model ensemble with a multiscale EAKF

FIG. 12. The 1-h ensemble probability of vorticity forecasts exceeding a threshold of 0.002 s21 at 1 km AGL starting from (top left)

1900UTC analyses and then from the every-15-min analyses out to (bottom right) 2315UTC.Overlaid in each panel is theNWS-observed

tornado damage track (gray outline).
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data assimilation and forecast systemwas developed and

tested for the 27 April 2011 Alabama outbreak of tor-

nadic supercells. The goal was to see how well this

continuous 5-min update system performed in predict-

ing the probabilities of low-level rotation for widespread

tornadic supercells during the 6-h assimilation period.

Observation-space diagnostic statistics reveal that the

filter shows no sign of forecast divergence during the 6-h

assimilation period, indicating the robustness of the data

assimilation system. The consistency ratio for reflectivity

is smaller in early assimilation cycles but increases with

timewhile the radial velocity observationsmaintainmore

favorable consistency ratios with values near ;1.0. The

assimilation system is able to analyze the main supercells

in the model at approximately the correct locations with

realistic supercellular structure and maintains the super-

cellular structure with low-level rotation during the 1-h

forecast period. However, the model produces many

spurious smaller cells during the 0–1-h forecast period

that are not observed. The short-range probability fore-

casts of reflectivity greater than 40dBZ show that the

ensemble is successful at associating high probabilities

with the dominant observed storms.However, themodel-

generated storm cores are somewhat smaller than the

observed storm cores, indicating that there are errors in

the model forecasts. The forecast storms also tend to

move faster than the observed storm with a northeast

displacement error. Onemajor source of forecast error in

storm-scale modeling is the model error. To understand

and reduce model errors associated with spurious cells

and biases in storm motion, we will conduct additional

analyses and sensitivity experiments in the future.

The grid-scale and neighborhood ensemble forecast

probabilities of strong low-level mesocyclones of the tor-

nadic supercell storms during the 6-h period are encour-

aging. The system is able to predict consistently (i.e., with

little variability fromone forecast to the next) the low-level

mesocyclones of the significant isolated tornadic super-

cells. For cases with multiple interacting storms in close

proximity, the system tends to produce more variability in

mesocyclone forecasts from one initialization time to the

next until the observations show the dominance of one of

the cells. Overall, there is a consistent and gradual increase

with time in the probabilities of low-level mesocyclone

forecasts from the continuous 5-min storm-scale update

systemwith forecast lead times averaging 35 and 18min for

the 10% and 50% probability thresholds, respectively, for

the 11 tornadic supercells examined. Within the context

of the WoF paradigm, the overall encouraging results

obtained from this study provide reasons for cautious

optimism and motivate us to conduct future studies on

how to reduce model errors (e.g., storm-motion errors

and spurious storms) and to design storm-scale ensembles

that better represent typical 1-h forecast errors.
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